Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(48): 55608-55619, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37982664

RESUMEN

Lithium-sulfur (Li-S) batteries have ultrahigh theoretical specific capacity, but the practical application is hindered by the severe shuttle effect and the sluggish redox kinetics of the intermediate lithium polysulfides (LiPSs). Effectively enhancing the conversion kinetics of LiPSs is essential for addressing these issues. Herein, the redox kinetics of LiPSs are effectively improved by introducing 6-azauracil (6-AU) molecules to the organic electrolyte to modulate the molecular orbital energy level of LiPSs. The 6-AU as a soluble catalyst can form complexes with LiPSs via Li-O bonds. These complexes are liable to transform because of the elevated HOMO and the reduced LUMO energy levels as compared to the dissociative LiPSs, resulting in small energy gaps (Egap) and exhibiting stronger redox activity. Benefiting from the rapid conversion kinetics, the shuttling effect of LiPSs is alleviated to a great extent, so that sulfur utilization is improved and the lithium electrode is protected. In addition, the introduction of 6-AU modulates the deposition behavior of Li2S and eases the coverage of the cathode surface by the insulating Li2S layer. The Li-S battery containing 6-AU provides superior capacity retention of 853 mAh g-1 after 150 cycles at 0.2 C and shows remarkable high-rate performance and retains a specific discharge capacity of 855 mAh g-1 at 5 C. This study accelerates the kinetics of Li-S batteries by tuning the HOMO and LUMO energy levels of LiPSs, which opens an avenue for designing functional electrolyte additives.

2.
ACS Appl Mater Interfaces ; 15(35): 41537-41548, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671463

RESUMEN

Cycling stability and safety are two of the main challenges facing lithium metal batteries with metallic lithium as anodes. Quasi-solid-state lithium metal batteries based on gel polymer electrolytes are one of the important development directions for lithium metal batteries addressing those challenges. Herein, we prepare lithiated phosphoryl cellulose nanocrystals (PCNC-Li) as a modification material for poly(vinylidene fluoride) (PVDF) gel polymer electrolyte to improve cycling stability and safety of quasi-solid-state lithium metal batteries. The synthesized PCNC-Li tends to form a uniform network structure on the surface of the PVDF membrane, in which the phosphoryl groups grafted regularly on celluloses can regulate the transport of lithium ions. As a result, a more uniform ion flux and more stable lithium anode interface support an obviously improved cycling stability for lithium metal batteries. Moreover, the introduction of the PCNC-Li coating layer makes the modified PVDF membranes have a better thermal stability and an enhanced mechanical strength, which is beneficial for improvement of safety of lithium metal batteries. This work provides a new alternative to fabricating a better composite gel polymer electrolyte for lithium metal batteries.

3.
ACS Appl Mater Interfaces ; 15(10): 13195-13204, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36880117

RESUMEN

A Li-rich Mn-based layered oxide cathode (LLO) is one of the most promising cathode materials for achieving high-energy lithium-ion batteries. Nevertheless, the intrinsic problems including sluggish kinetics, oxygen evolution, and structural degradation lead to unsatisfactory performance in rate capability, initial Coulombic efficiency, and stability of LLO. Herein, different from the current typical surface modification, an interfacial optimization of primary particles is proposed to improve the simultaneous transport of ions and electrons. The modified interfaces containing AlPO4 and carbon can effectively increase the Li+ diffusion coefficient and decrease the interfacial charge-transfer resistance, thereby achieving fast charge-transport kinetics. Moreover, the in situ high-temperature X-ray diffraction confirms that the modified interface can improve the thermal stability of LLO by inhibiting the lattice oxygen release on the surface of the delithiated cathode material. In addition, the chemical and visual analysis of the cathode-electrolyte interface (CEI) composition clarifies that a highly stable and conductive CEI film generated on the modified electrode can facilitate interfacial kinetic transmission during cycling. As a result, the optimized LLO cathode exhibits a high initial Coulombic efficiency of 87.3% at a 0.2C rate and maintains superior high-rate stability with a capacity retention of 88.2% after 300 cycles at a 5C high rate.

4.
ACS Appl Mater Interfaces ; 14(50): 56110-56119, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36490324

RESUMEN

With many reported attempts on fabricating single-ion conducting polymer electrolytes, they still suffer from low ionic conductivity, narrow voltage window, and high cost. Herein, we report an unprecedented approach on improving the cationic transport number (tLi+) of the polymer electrolyte, i.e., single-ion conducting polymeric protective interlayer (SIPPI), which is designed between the conventional polymer electrolyte (PVEC) and Li-metal electrode. Satisfied ionic conductivity (1 mS cm-1, 30 °C), high tLi+ (0.79), and wide-area voltage stability are realized by coupling the SIPPI with the PVEC electrolyte. Benefiting from this unique design, the Li symmetrical cell with the SIPPI shows stable cycling over 6000 h at 3 mA cm-2, and the full cell with the SIPPI exhibits stable cycling performance with a capacity retention of 86% over 1000 cycles at 1 C and 25 °C. This incorporated SIPPI on the Li anode presents an alternative strategy for enabling high-energy density, long cycling lifetime, and safe and cost-effective solid-state batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...